Recent advances and future trends in zebrafish bioassays for aquatic ecotoxicology

Main Article Content

Istvan Magyary

Abstract

Zebrafish (Danio rerio), a cyprinid teleost, has become an ideal model species for aquatic ecotoxicology due to the broad spectra of methodologies that have been developed since the 1980s. The zebrafish has many advantages as a model organism e.g. small size, ex utero development of the embryo, short reproductive cycle, and transparent embryos. In addition, the zebrafish shares a high degree of homology with the human genome. It has become a powerful model organism for genetics, development, environmental toxicology, several human diseases and pharmacology. Zebrafish bioassays can be used for environmental monitoring including pollutant evaluations, such as toxic heavy metals, endocrine disruptors, and organic pollutants. The large number of transparent embryos gained from zebrafish females, in vitro and rapid embryonic development and ready-to-use methods of biotechnology enables us to use mostly automatized high-throughput screening not only in pharmaceutical drug development protocols but in aquatic ecotoxicology as well.

Downloads

Download data is not yet available.

Article Details

How to Cite
Magyary, I. (2018). Recent advances and future trends in zebrafish bioassays for aquatic ecotoxicology. Ecocycles, 4(2), 12-18. https://doi.org/10.19040/ecocycles.v4i2.108
Section
Articles

References

Blaise, C., Gagné, F., 2013. Aquatic ecotoxicology: what has been accomplished and what lies ahead? An Eastern Canada historical perspective. Journal of Xenobiotics. 3. 10.4081/xeno.2013.e8.

Blaise, C., Preface In: Férard JF, Blaise C, eds. Encyclopedia of aquatic ecotoxicology. Vol. I-II. Dordrecht: Springer; 2013. pp xi.
Boxall, A.B., Rudd, M.A., Brooks, B.W., Caldwell, D.J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., Staveley, J.P., Verslycke, T., Ankley, G.T., Beazley, K.F., Belanger, S.E., Berninger, J.P., Carriquiriborde, P., Coors, A., Deleo, P.C., Dyer, S.D., Ericson, J.F., Gagné, F., Giesy, J.P., Gouin, T., Hallstrom, L., Karlsson, M.V., Larsson, D.G., Lazorchak, J.M., Mastrocco, F., McLaughlin, A., McMaster, M.E., Meyerhoff, R.D., Moore, R., Parrott, J.L., Snape, J.R., Murray-Smith, R., Servos, M.R., Sibley, P.K., Straub, J.O., Szabo, N.D., Topp, E., Tetreault, G.R., Trudeau, V.L., Van Der Kraak, G., 2012. Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect, Sep;120(9):1221-9.
Bradford, Y.M., Toro, S., Ramachandran, S., Ruzicka, L., Howe, D.G., Eagle, A., Kalita, P., Martin, R., Taylor Moxon S.A., Schaper, K., Westerfield, M. 2017. Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN. ILAR J. Jul 1;58(1):4-16.

Braunbeck, T., Lammer, E., 2006. Background Paper on FISH EMBRYO TOXICITY ASSAYS. Prepared for GERMAN FEDERAL ENVIRONMENT AGENCY PO Box 1406 · D-06813 Dessau, p 40.

Braunbeck, T., Kais, B., Lammer, E., Otte, J., Schneider, K., Stengel, D., Strecker, R., 2015. The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res. 1–15.

Cizmas, L., Sharma, V.K., Gray, C.M., McDonald, T.J., 2015. Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environmental Chemistry Letters, 13(4), 381–394.

Dai, Y.J., Jia, Y.F., Chen, N., Bian, W.P., Li Q.K., Ma Y.B., Chen, Y.L., Pei, D.S., 2014. Zebrafish as a model system to study toxicology. Environ Toxicol Chem. Jan;33(1):11-7.

Di Paolo, C., Seiler, T.B., Keiter, S., Hu, M., Muz, M., Brack, W., Hollert, H., 2015. The value of zebrafish as an integrative model in effect-directed analysis—a review. Environ Sci Eur 27:8.

Driever, W., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Malicki, J., Stemple, D.L., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., Boggs, C., 1996. A genetic screen for mutations affecting embryogenesis in zebrafish. Development, Dec;123:37-46.

Garcia-Käufer, M., Gartiser, S., Hafner, C., Schiwy, S., Keiter, S., Gründemann, C., Hollert, H., 2015. Genotoxic and teratogenic effect of freshwater.sediment samples from the Rhine and Elbe River (Germany) in.zebrafish embryo using a multi-endpoint testing strategy. Environ.Sci Pollut Res. 22: 16341.

Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., Nüsslein-Volhard, C., 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, Dec;123:1-36.

Hafner, C., Gartiser, S., Garcia-Käufer, M., Schiwy, S., Hercher, C., Meyer, W., Achten, C., Larsson, M., Engwall, M., Keiter, S., Hollert, H., 2015. Investigations on sediment toxicity of German rivers applying a standardized bioassay battery. Environ Sci Pollut Res. 1–13.

Hallare, A.V., Seiler, T.B., Hollert, H., 2011. The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soils Sediments 11:141–173.

Hollert, H., Keiter, S.H., 2015. Danio rerio as a model in aquatic toxicology and sediment research. Environ Sci Pollut Res, 22:16243–16246.

Kamstra, J., Aleström, P., Kooter, J., Legler, J., 2015. Zebrafish as a model to.study the role of DNA methylation in environmental toxicology. Environ Sci Pollut Res. 1–15.
Langheinrich U. 2003. Zebrafish: a new model on the pharmaceutical catwalk. Bioessays, Sep;25(9):904-12.

Lee, O., Takesono, A., Tada, M., Tyler, C.R., Kudoh, T., 2012. Biosensor zebrafish provide new insights into potential health effects of environmental estrogens. Environ Health Perspect. Jul;120(7):990-6.

Legradi, J., el Abdellaoui, N., van Pomeren, M., Legler, J., 2015. Comparability of behavioural assays using zebrafish larvae to assess neurotoxicity. Environ Sci Pollut Res. 1–13.

Nikinmaa, M., Chapter 1 - Introduction: What is Aquatic Toxicology? Editor(s): Mikko Nikinmaa, An Introduction to Aquatic Toxicology, Academic Press, 2014, pp 1-17.

OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 203: Fish, Acute Toxicity Test https://www.oecd-ilibrary.org/environment/test-no-203-fish-acute-toxicity-test_9789264069961-en

OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 210: Fish, Early-life Stage Toxicity Test https://www.oecd-ilibrary.org/environment/test-no-210-fish-early-life-stage-toxicity-test_9789264203785-en

OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages https://www.oecd-ilibrary.org/environment/test-no-212-fish-short-term-toxicity-test-on-embryo-and-sac-fry-stages_9789264070141-en

OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 215: Fish, Juvenile Growth Test https://www.oecd-ilibrary.org/environment/test-no-215-fish-juvenile-growth-test_9789264070202-en

OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 230: 21-day Fish Assay https://www.oecd-ilibrary.org/environment/test-no-230-21-day-fish-assay_9789264076228-en

OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 234: Fish Sexual Development Test https://www.oecd-ilibrary.org/environment/test-no-234-fish-sexual-development-test_9789264122369-en

OECD Guidelines for the Testing of Chemicals, Section 2, Test No. 236: Fish Embryo Acute Toxicity (FET) Test https://www.oecd-ilibrary.org/environment/test-no-236-fish-embryo-acute-toxicity-fet-test_9789264203709-en

Pawar, N., Gireesh-Babu, P., Sabnis, S., Rasal, K., Murthy, R., Zaidi, S.G., Sivasubbu, S., Chaudhari, A., 2016. Development of a fluorescent transgenic zebrafish biosensor for sensing aquatic heavy metal pollution. Transgenic Res. Oct;25(5):617-27.

Redelstein, R., Zielke, H., Spira, D., Feiler, U., Erdinger, U., Zimmer, H.,Wiseman, S., Hecker, M., Giesy, J.P., Seiler, T.B., Hollert, H. 2015. Bio-accumulation.and molecular effects of sediment-bound metals in zebrafish embryos. Environ Sci Pollut Res. 22:16290–16304.

Strähle, U., Scholz, S., Geisler, R., Greiner, P., Hollert, H., Rastegar, S., Schumacher, A., Selderslaghs, I., Weiss, C., Witters, H., Braunbeck, T., 2012. Zebrafish embryos as an alternative to animal experiments— a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol, 33:128–132.

Streisinger, G., Walker, C., Dower, N., Knauber, D., Singer, F., 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio), Nature 291(5813): 293-296.
THE ZEBRAFISH BOOK https://zfin.org/zf_info/zfbook/zfbk.html

Thellmann, P., Köhler, H-R., Rößler, A., Scheurer, M., Schwarz, S., Vogel, H-J., Triebskorn, R., 2015. Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies. Environ Sci Pollut Res. 1–12.
Varga, Z.M., 2016. Aquaculture, husbandry, and shipping at the Zebrafish International Resource Center. Methods Cell Biol. 2016;135:509-34.

Vincze, K., Graf, K., Scheil, V., Koehler, H.R., Triebskorn, R., 2014. Embryotoxic and proteotoxic effects of water and sediment from the Neckar River (Southern Germany) to zebrafish (Danio rerio) embryos. Environmental Sciences Europe 26.

Wang, P., Zhang, L., Liu, L., Chen, L., Gao, H., Wu, L., 2015. Toxicity of sediment cores from Yangtze River estuary to zebrafish (Danio rerio) embryos. Environ Sci Pollut Res. 1–11.