Research directions in plant protection chemistry

Andras Szekacs, Tamas Komives


This Opinion paper briefly summarizes the views of the authors on the directions of research in the area of plant protection chemistry. We believe these directions need to focus on (1) the discovery of new pesticide active ingredients, and (2) the protection of human health and the environment. Research revenues are discussed thematically in topics of target site identification, pesticide discovery, environmental aspects, as well as keeping track with the international trends. The most fundamental approach, target site identification, covers both computer-aided molecular design and research on biochemical mechanisms. The discovery of various classes of pesticides is reviewed including classes that hold promise to date, as well as up-to-date methods of innovation, e.g. utilization of plant metabolomics in identification of novel target sites of biological activity. Environmental and ecological aspects represent a component of increasing importance in pesticide development by emphasizing the need to improve methods of environmental analysis and assess ecotoxicological side-effects, but also set new directions for future research. Last, but not least, pesticide chemistry and biochemistry constitute an integral part in the assessment of related fields of plant protection, e.g. agricultural biotechnology, therefore, issues of pesticide chemistry related to the development and cultivation of genetically modified crops are also discussed.

Full Text:



Aliferis, K. A., Jabaji, S. 2011. Metabolomics – A robust bioanalytical approach for the discovery of the modes-of-action of pesticides: A review. Pestic. Biochem. Physiol. 100 (2): 105–117.

Alves, V. M., Muratov, E. N., Zakharov, A., Muratov, N. N., Andrade, C. H., Tropsha, A. 2017. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem Toxicol. online first

Beck, J. J., Coats, J. R., Duke, S. O., Koivunen, M. E. (Eds.) 2013. Pest Management with Natural Prod-ucts. ACS Symp. Ser. Vol. 1141, Amer. Chem. Soc., Wash¬ington DC, USA.

Benbrook, C.M. 2016. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28: 3.

Benfenati, E. (Ed.) 2016. In Silico Methods for Predict-ing Drug Toxicity. Springer, Basel, Switzer¬land.

Blande, J. D., Glinwood, R. (Eds.) 2016. Deciphering Chemical Language of Plant Communication. Sprin-ger, Basel, Switzerland.

Bordás, B., Komives, T., Lopata, A. 2003. Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodolo¬gies. Pest Manag. Sci. 59 (4): 393–400.

Budai, P., Grúz, A., Várnagy, L., Kormos, E., Somlyay, I. M., Lehel, J., Szabó, R. 2015. Toxicity of chlorpy-riphos containing formulation and heavy elements (Cd, Pb) to chicken embryos. Commun. Agric. Appl. Biol. Sci. 80 (3): 393–396.

Casida, J. E., Quistad, G. B. 1998. Golden age of insect-icide research: Past, present, or future. Annu. Rev. Entomol., 43: 1–16 (1998).

Carson, R. L. 1962. Silent Spring. Houghton Mifflin, Boston, USA.

Darvas, B., Székács, A. (Eds.) 2006. Agricultural ecotoxicology, L’Harmattan, Budapest) (in Hunga-rian)

Defarge, N., Takács, E., Lozano, V., Mesnage, R., Spiroux de Vendômois, J., Séralini, G.E., Székács, A. 2016. Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int. J. Environ. Res. Pub. Health 13 (3): 264.

Delaney, J., Clarke, E., Hughes, D., Rice, M., 2006. Modern agrochemical research: a missed opportunity for drug discovery? Drug Discov. Today 11 (17-18): 839–845.

Dill, G.M., Sammons, R.D., Feng, P.C.C., Kohn, F., Kretzmer, K., Mehrsheikh, A., Bleeke, M., Honegger, J.L., Farmer, D., Wright, D., Haupfear, E.A. 2010. Gly-pho¬sate: Discovery, development, applications, and properties. In: Glyphosate Resistance in Crops and Weeds: History, Development, and Management, Nan-dula, V.K. (Ed.), Wiley, Hoboken, NJ, USA, pp. 1–33.

Dixon, R A., Gang, ,D. R., Charlton, A. J., Fiehn, O., Kuiper, H. A., Reynolds, T. L., Tjeerdema, R. S., Jeffery, E. H., German, J. B., Ridley, W. P., Seiber, J. N., 2006. Applications of metabolomics in agricul-ture. J. Agric. Food Chem. 54 (24): 8984–8994.

EC 2016. European Commission – Fact Sheet. FAQs: Glyphosate. European Commission, Brussels, Belgium.

EFSA 2015. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 13 (11): 4302 [107 pp.]

EPA 1998. Reregistration Eligibility Decision (RED) Bromoxynil. US Environmental Protection Agency (EPA), Washington DC, USA.

Eurostat, 2013. Agri-Environmental Indicator - Pesticide Pollution of Water. Eurostat Statistical Office of the European Union, Luxembourg, Luxembourg.

Georghiou, G. P., Saito, T. 1983. Pest Resistance to Pesticides. Plenum Press, New York, USA.

Hammock, B.D., Székács, A., Hanzlik, T., Maeda, S., Philpott, M., Bonning, B., Posse, R. 1989. Use of transition state theory in the design of chemical and molecular agents for insect control. In: "Recent Advances in the Chemistry of Insect Control", (Crombie, L., Ed.), pp. 256–277; Royal Society of Chemistry, Cambridge, UK.

He, W., Gou, W., Qian, Y., Zhang, S., Ren, D., Liu, S. 2015. Synergistic hepatotoxicity by cadmium and chlorpyrifos: Disordered hepatic lipid homeostasis. Molecular Medicine Reports, 12 (1): 303–308,

Horowitz, A. R., Peter, C. E., Isaac, I. 2009. Biorational Pest Control – An Overview. Springer Basel, Swit¬zer-land.

IARC 2015. Some Organophosphate Insecticides and Herbicides: Diazinon, Glyphosate, Malathion, Parathion, and Tetrachlorvinphos. Glyphosate. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 112: 1–92.

ICAC 1998. Cultivation of BXN varieties prohibited in the USA. The ICEC Recorder XVI (1): 18.

Knauer, K. 2016. Pesticides in surface waters: a compa-rison with regulatory acceptable concentrations (RACs) determined in the authorization process and consideration for regulation. Environ. Sci. Eur. 28 (1): 13.

Komives, T. 2016. Chemical plant protection. Past. Present. Future? Ecocycles 2 (1): 1–2.

Komives, T. 1992. Herbicide safeners: Chemistry, mode of action, applications. Weed Abstracts 41 (12): 553–560.

Komives, T., Gullner, G., 2006. Dendroremediation: The Use of Trees in Cleaning up Polluted Soils, in: Mack-ova, M., Dowling, D., Macek, T. (Eds.), Phytoreme-diation Rhizoremediation. Springer Netherlands, pp. 23–31.

Lareen, A., Burton, F., Schäfer, P., 2016. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90 (6): 575–587.

Loomis, D., Guyton, K., Grosse, Y., El Ghissasi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Matt-ock, H., Straif, K. 2015. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid. Lancet 16 (8): 891–892.

Marshall Clark, J., Yamaguchi, I. (Eds.) 2001. Agroche-mical Resistance: Extent, Mechanism and Detection. ACS Symp. Ser. Vol. 808, Amer. Chem. Soc., Wash-ington DC, USA.

Mesnage, R., Defarge, M., Spiroux de Vendomois, J., séralini, J.-E. 2014. Major pesticides are more toxic to human cells than their declared active principles. BioMed Res. Int. 2014: Article ID 179691, 8 pages.

Petroski, R. J., Tellez, M. R., Behle, R. W. (Eds.) 2005. Semiochemicals in Pest and Weed Control. ACS Symp. Ser. Vol. 906, Amer. Chem. Soc., Washington DC, USA.

Rathore, H. S., Nollet, L. M. L. 2012. Pesticides. Evalu-ation of Environmental Pollution. CRC Press, Boca Raton, USA.

Schulz, S. (Ed.) 2004. The Chemistry of Pheromones and Other Semiochemicals. Vol. I. Springer, Basel, Switzerland.

Schulz, S. (Ed.) 2005. The Chemistry of Pheromones and Other Semiochemicals. Vol. II. Springer, Basel, Switzerland.

Sharon, A., Amsellem, Z., Gressel, J., 1992. Glyphosate suppression of an elicited defense response increased susceptibility of Cassia obtusifolia to a myco¬her¬bi-cide. Plant Physiol. 98 (2): 654–659.

Sugitate, K., Yamashita, K., Nakamura, S. 2015. Difference in the matrix components by cleanup methods between the notified multiresidue pesticide analysis method in Japan and the QuEChERS method. J. Pestic. Sci. 40 (4): 200–207.

Székács, A. 2017. Environmental and ecological aspects in the overall assessment of bioeconomy. J. Agric. Environ. Ethics 30 (1): 153–170.

Székács, A., Darvas, B., 2012. Forty years with glyphosate, in: Hasaneen, M.N. (Ed.), Herbicides – Properties, Synthesis and Control of Weeds. InTech, Rijeca, Croatia, pp. 247–284.

Székács, A., Darvas, B., 2017. The re-registration of gly-phosate in the European Union. Ecocycles 3 (2): accepted for publication.

Székács, I., Fejes, Á., Klátyik, Sz., Takács, E., Patkó, D., Pomóthy, J., Mörtl, M., Horváth, R., Madarász, E., Darvas, B., Székács, A. 2014. Environmental and toxicological impacts of glyphosate with its formul-ating adjuvant. Intl. J. Biol. Biomol. Agric. Food Bio-tech. Engineer. 8 (3): 219–224.

Székács, A., Mörtl, M., Darvas, B. 2015. Monitoring pesticide residues in surface and ground water in Hungary – surveys in 1990-2015. J. Chem. 2015: Article ID 717948, 15 pages.

Weckwerth, W. 2003. Metabolomics in systems biology. Annu. Rev. Plant Biol. 54: 669–689.


  • There are currently no refbacks.

Copyright (c) 2017 Andras Szekacs, Tamas Komives

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2416-2140
DOI [Crossref] 10.19040/ecocycles