Research directions in plant protection chemistry

Andras Szekacs, Tamas Komives

Abstract


This Opinion paper briefly summarizes the views of the authors on the directions of research in the area of plant protection chemistry. We believe these directions need to focus on (1) the discovery of new pesticide active ingredients, and (2) the protection of human health and the environment. Research revenues are discussed thematically in topics of target site identification, pesticide discovery, environmental aspects, as well as keeping track with the international trends. The most fundamental approach, target site identification, covers both computer-aided molecular design and research on biochemical mechanisms. The discovery of various classes of pesticides is reviewed including classes that hold promise to date, as well as up-to-date methods of innovation, e.g. utilization of plant metabolomics in identification of novel target sites of biological activity. Environmental and ecological aspects represent a component of increasing importance in pesticide development by emphasizing the need to improve methods of environmental analysis and assess ecotoxicological side-effects, but also set new directions for future research. Last, but not least, pesticide chemistry and biochemistry constitute an integral part in the assessment of related fields of plant protection, e.g. agricultural biotechnology, therefore, issues of pesticide chemistry related to the development and cultivation of genetically modified crops are also discussed.


Full Text:

PDF XML

References


Aliferis, K. A., Jabaji, S. 2011. Metabolomics – A robust bioanalytical approach for the discovery of the modes-of-action of pesticides: A review. Pestic. Biochem. Physiol. 100 (2): 105–117.

http://dx.doi.org/10.1016/j.pestbp.2011.03.004

Alves, V. M., Muratov, E. N., Zakharov, A., Muratov, N. N., Andrade, C. H., Tropsha, A. 2017. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem Toxicol. online first

http://dx.doi.org/10.1016/j.fct.2017.04.008

Beck, J. J., Coats, J. R., Duke, S. O., Koivunen, M. E. (Eds.) 2013. Pest Management with Natural Prod-ucts. ACS Symp. Ser. Vol. 1141, Amer. Chem. Soc., Wash¬ington DC, USA.

http://dx.doi.org/10.1021/bk-2013-1141.fw001

Benbrook, C.M. 2016. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28: 3.

http://dx.doi.org/10.1186/s12302-016-0070-0

Benfenati, E. (Ed.) 2016. In Silico Methods for Predict-ing Drug Toxicity. Springer, Basel, Switzer¬land.

http://www.springer.com/in/book/9781493936076

Blande, J. D., Glinwood, R. (Eds.) 2016. Deciphering Chemical Language of Plant Communication. Sprin-ger, Basel, Switzerland.

http://www.springer.com/gp/book/9783319334967

Bordás, B., Komives, T., Lopata, A. 2003. Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodolo¬gies. Pest Manag. Sci. 59 (4): 393–400.

http://dx.doi.org/10.1002/ps.614

Budai, P., Grúz, A., Várnagy, L., Kormos, E., Somlyay, I. M., Lehel, J., Szabó, R. 2015. Toxicity of chlorpy-riphos containing formulation and heavy elements (Cd, Pb) to chicken embryos. Commun. Agric. Appl. Biol. Sci. 80 (3): 393–396.

https://www.ncbi.nlm.nih.gov/pubmed/27141737

Casida, J. E., Quistad, G. B. 1998. Golden age of insect-icide research: Past, present, or future. Annu. Rev. Entomol., 43: 1–16 (1998).

http://dx.doi.org/10.1146/annurev.ento.43.1.1

Carson, R. L. 1962. Silent Spring. Houghton Mifflin, Boston, USA.

http://www.rachelcarson.org/SilentSpring.aspx

Darvas, B., Székács, A. (Eds.) 2006. Agricultural ecotoxicology, L’Harmattan, Budapest) (in Hunga-rian)

Defarge, N., Takács, E., Lozano, V., Mesnage, R., Spiroux de Vendômois, J., Séralini, G.E., Székács, A. 2016. Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int. J. Environ. Res. Pub. Health 13 (3): 264.

http://dx.doi.org/10.3390/ijerph13030264

Delaney, J., Clarke, E., Hughes, D., Rice, M., 2006. Modern agrochemical research: a missed opportunity for drug discovery? Drug Discov. Today 11 (17-18): 839–845.

http://dx.doi.org/10.1016/j.drudis.2006.07.002

Dill, G.M., Sammons, R.D., Feng, P.C.C., Kohn, F., Kretzmer, K., Mehrsheikh, A., Bleeke, M., Honegger, J.L., Farmer, D., Wright, D., Haupfear, E.A. 2010. Gly-pho¬sate: Discovery, development, applications, and properties. In: Glyphosate Resistance in Crops and Weeds: History, Development, and Management, Nan-dula, V.K. (Ed.), Wiley, Hoboken, NJ, USA, pp. 1–33.

http://dx.doi.org/10.1002/9780470634394.ch1

Dixon, R A., Gang, ,D. R., Charlton, A. J., Fiehn, O., Kuiper, H. A., Reynolds, T. L., Tjeerdema, R. S., Jeffery, E. H., German, J. B., Ridley, W. P., Seiber, J. N., 2006. Applications of metabolomics in agricul-ture. J. Agric. Food Chem. 54 (24): 8984–8994.

http://dx.doi.org/10.1021/jf061218t

EC 2016. European Commission – Fact Sheet. FAQs: Glyphosate. European Commission, Brussels, Belgium.

http://europa.eu/rapid/press-release_MEMO-16-2012_en.htm

EFSA 2015. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 13 (11): 4302 [107 pp.]

http://dx.doi.org/10.2903/j.efsa.2015.4302

EPA 1998. Reregistration Eligibility Decision (RED) Bromoxynil. US Environmental Protection Agency (EPA), Washington DC, USA.

https://archive.epa.gov/pesticides/reregistration/web/pdf/2070red.pdf

Eurostat, 2013. Agri-Environmental Indicator - Pesticide Pollution of Water. Eurostat Statistical Office of the European Union, Luxembourg, Luxembourg.

http://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_pesticide_pollution_of_water

Georghiou, G. P., Saito, T. 1983. Pest Resistance to Pesticides. Plenum Press, New York, USA.

http://www.springer.com/gp/book/9781468444681

Hammock, B.D., Székács, A., Hanzlik, T., Maeda, S., Philpott, M., Bonning, B., Posse, R. 1989. Use of transition state theory in the design of chemical and molecular agents for insect control. In: "Recent Advances in the Chemistry of Insect Control", (Crombie, L., Ed.), pp. 256–277; Royal Society of Chemistry, Cambridge, UK.

https://searchworks.stanford.edu/view/726505

He, W., Gou, W., Qian, Y., Zhang, S., Ren, D., Liu, S. 2015. Synergistic hepatotoxicity by cadmium and chlorpyrifos: Disordered hepatic lipid homeostasis. Molecular Medicine Reports, 12 (1): 303–308,

http://dx.doi.org/10.3892/mmr.2015.3381

Horowitz, A. R., Peter, C. E., Isaac, I. 2009. Biorational Pest Control – An Overview. Springer Basel, Swit¬zer-land.

https://link.springer.com/chapter/10.1007%2F978-90-481-2316-2_1

IARC 2015. Some Organophosphate Insecticides and Herbicides: Diazinon, Glyphosate, Malathion, Parathion, and Tetrachlorvinphos. Glyphosate. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 112: 1–92.

http://monographs.iarc.fr/ENG/Monographs/vol112/mono112-09.pdf

ICAC 1998. Cultivation of BXN varieties prohibited in the USA. The ICEC Recorder XVI (1): 18.

https://www.icac.org/tech/Cotton-Biotechnology/ICAC-Recorder-Articles

Knauer, K. 2016. Pesticides in surface waters: a compa-rison with regulatory acceptable concentrations (RACs) determined in the authorization process and consideration for regulation. Environ. Sci. Eur. 28 (1): 13.

http://dx.doi.org/10.1186/s12302-016-0083-8

Komives, T. 2016. Chemical plant protection. Past. Present. Future? Ecocycles 2 (1): 1–2.

http://dx.doi.org/10.19040/ecocycles.v2i1.47

Komives, T. 1992. Herbicide safeners: Chemistry, mode of action, applications. Weed Abstracts 41 (12): 553–560.

https://www.academia.edu/12376743/Herbicide_safeners_chemistry_mode_of_action_applications

Komives, T., Gullner, G., 2006. Dendroremediation: The Use of Trees in Cleaning up Polluted Soils, in: Mack-ova, M., Dowling, D., Macek, T. (Eds.), Phytoreme-diation Rhizoremediation. Springer Netherlands, pp. 23–31.

http://dx.doi.org/10.1007/978-1-4020-4999-4_3

Lareen, A., Burton, F., Schäfer, P., 2016. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90 (6): 575–587.

http://dx.doi.org/10.1007/s11103-015-0417-8

Loomis, D., Guyton, K., Grosse, Y., El Ghissasi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Matt-ock, H., Straif, K. 2015. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid. Lancet 16 (8): 891–892.

http://dx.doi.org/10.1016/S1470-2045(15)00081-9

Marshall Clark, J., Yamaguchi, I. (Eds.) 2001. Agroche-mical Resistance: Extent, Mechanism and Detection. ACS Symp. Ser. Vol. 808, Amer. Chem. Soc., Wash-ington DC, USA.

http://dx.doi.org/10.1021/bk-2002-0808

Mesnage, R., Defarge, M., Spiroux de Vendomois, J., séralini, J.-E. 2014. Major pesticides are more toxic to human cells than their declared active principles. BioMed Res. Int. 2014: Article ID 179691, 8 pages.

http://dx.doi.org/10.1155/2014/179691

Petroski, R. J., Tellez, M. R., Behle, R. W. (Eds.) 2005. Semiochemicals in Pest and Weed Control. ACS Symp. Ser. Vol. 906, Amer. Chem. Soc., Washington DC, USA.

http://dx.doi.org/10.1021/bk-2005-0906

Rathore, H. S., Nollet, L. M. L. 2012. Pesticides. Evalu-ation of Environmental Pollution. CRC Press, Boca Raton, USA.

https://www.crcpress.com/Pesticides-Evaluation-of-Environmental-Pollution/Rathore-Nollet/p/book/9781439836248

Schulz, S. (Ed.) 2004. The Chemistry of Pheromones and Other Semiochemicals. Vol. I. Springer, Basel, Switzerland.

http://www.springer.com/us/book/9783540208280

Schulz, S. (Ed.) 2005. The Chemistry of Pheromones and Other Semiochemicals. Vol. II. Springer, Basel, Switzerland.

https://link.springer.com/book/10.1007%2Fb83344

Sharon, A., Amsellem, Z., Gressel, J., 1992. Glyphosate suppression of an elicited defense response increased susceptibility of Cassia obtusifolia to a myco¬her¬bi-cide. Plant Physiol. 98 (2): 654–659.

http://dx.doi.org/10.1104/pp.98.2.654

Sugitate, K., Yamashita, K., Nakamura, S. 2015. Difference in the matrix components by cleanup methods between the notified multiresidue pesticide analysis method in Japan and the QuEChERS method. J. Pestic. Sci. 40 (4): 200–207.

http://dx.doi.org/10.1584/jpestics.D15-031

Székács, A. 2017. Environmental and ecological aspects in the overall assessment of bioeconomy. J. Agric. Environ. Ethics 30 (1): 153–170.

http://dx.doi.org/10.1007/s10806-017-9651-1

Székács, A., Darvas, B., 2012. Forty years with glyphosate, in: Hasaneen, M.N. (Ed.), Herbicides – Properties, Synthesis and Control of Weeds. InTech, Rijeca, Croatia, pp. 247–284.

http://dx.doi.org/10.5772/32491

Székács, A., Darvas, B., 2017. The re-registration of gly-phosate in the European Union. Ecocycles 3 (2): accepted for publication.

http://dx.doi.org/10.19040/ecocycles.v3i2.XX

Székács, I., Fejes, Á., Klátyik, Sz., Takács, E., Patkó, D., Pomóthy, J., Mörtl, M., Horváth, R., Madarász, E., Darvas, B., Székács, A. 2014. Environmental and toxicological impacts of glyphosate with its formul-ating adjuvant. Intl. J. Biol. Biomol. Agric. Food Bio-tech. Engineer. 8 (3): 219–224.

https://waset.org/publications/9997659/environmental-and-toxicological-impacts-of-glyphosate-with-its-formulating-adjuvant

Székács, A., Mörtl, M., Darvas, B. 2015. Monitoring pesticide residues in surface and ground water in Hungary – surveys in 1990-2015. J. Chem. 2015: Article ID 717948, 15 pages.

http://dx.doi.org/10.1155/2015/717948

Weckwerth, W. 2003. Metabolomics in systems biology. Annu. Rev. Plant Biol. 54: 669–689.

http://dx.doi.org/10.1146/annurev.arplant.54.031902.135014




DOI: http://dx.doi.org/10.19040/ecocycles.v3i2.71

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Andras Szekacs, Tamas Komives

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ECOCYCLES
ISSN 2416-2140
DOI prefix 10.19040